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Faussurier et al. �Phys. Rev. E 65, 016403 �2001�� proposed to use a variational principle relying on
Jensen-Feynman �or Gibbs-Bogoliubov� inequality in order to optimize the accounting for two-particle inter-
actions in the calculation of canonical partition functions. It consists of a decomposition into a reference
electron system and a first-order correction. The procedure appears to be very efficient in order to evaluate the
free energy and the orbital populations. In this work, we present numerical applications of the method and
propose to extend it using a reference energy which includes the interaction between two electrons inside a
given orbital. This is possible, thanks to our efficient recursion relation for the calculation of partition func-
tions. We also show that a linear reference energy, however, is usually sufficient to achieve a good precision
and that the most promising way to improve the approach of Faussurier et al. is to apply Jensen’s inequality to
a more convenient convex function.
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I. INTRODUCTION

The superconfiguration method �1� is a powerful tech-
nique for the study of opacity and equation of state of hot
plasmas. The formalism requires the calculation of the parti-
tion functions of the superconfigurations using recursive
methods and relies on independent-particle statistics. For that
purpose, in the original supertransition array �STA� ap-
proach, two-particle interactions are averaged over the con-
figurations of a given superconfiguration. The formalism pro-
posed by Faussurier et al. �2� consists of an optimization of
the orbital energies taking into account the interactions using
a variational principle. This method reduces drastically the
number of superconfigurations required for the convergence
of STA calculations due to a better treatment of the electron
correlations. In the present work, we investigate two possible
improvements of the latter approach.

The first one consists of using a reference energy which is
quadratic with respect to the populations. This enables one to
take into account the interaction between two electrons be-
longing to the same orbital. Moreover, it can be easily un-
derstood that a quadratic reference energy is more appropri-
ate for the description of a system including quadratic two-
body interactions. We show, however, using a more general
reference energy, that the linear reference energy gives re-
sults that are already very close to the exact values.

The second improvement consists of applying Jensen’s
inequality to another convex function �3�, which is the dif-
ference between the exponential function and its
�2n−1�th-order Taylor development. Such a procedure re-
quires the computation of high-order moments but appears to
be very powerful.

The paper is organized as follows. In Sec. II, we express
the partition function of interacting electrons with an arbi-
trary reference system that can be optimized through a varia-
tional principle. In Sec. III, we study the impact of choosing
a particular reference energy on the accuracy of the method.

We discuss the possibility, in our recursion relation �4,5�, to
use a nonlinear reference energy in order to better account
for two-electron interactions. In Sec. IV, we propose an im-
proved Jensen-Feynman inequality. Section V is the conclu-
sion.

II. STATISTICS OF INTERACTING ELECTRONS

A. Generalities

The central-field model is the simplest approach for cal-
culating the atomic structure of an interacting many-electron
system. Each electron is assumed to move independently in a
central potential that represents the electrostatic field of the
nucleus and the spherically averaged mutual repulsions of
the other electrons. This central-field Hamiltonian allows one
to characterize the quantum states of the system �energies
and wave functions� by means of degenerate relativistic or
nonrelativistic electron configurations. The latter are defined
as groups of degenerate subshells of the type �ni�i�pi �non-
relativitic case� or �ni�i ji�pi �relativistic case�, where ni is the
principal quantum number, �i is the orbital quantum number,
ji=�i�1 /2 is the relativistic angular momentum, and pi is
the population of the ith orbital such that 0� pi�gi �the
degeneracy gi is equal to 4�i+2 in the nonrelativistic case
and to 2ji+1 in the relativistic case�. Since configurations
differ only by the electron populations of orbitals, it is useful
to represent them by the vector p� = �p1 , p2 , . . . , pN� of N given
orbitals. The accuracy of the central-field model can then be
improved by evaluating the noncentral parts of the Hamil-
tonian using the first-order perturbation theory. Accounting
for one- and two-body operators in the Hamiltonian of the
system, the energy E�p�� of a configuration reads

E�p�� = �
i=1

N

pi�i +
1

2 �
i,j=1

N

pi�pj − �ij�Vij , �1�

where �i �energy of orbital i� and Vij �interaction energy be-
tween orbitals i and j� are evaluated from the central-field
Hamiltonian and �ij is Kronecker’s symbol.*jean-christophe.pain@cea.fr
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The main purpose of this paper is to study the statistics of
physical quantities over an arbitrary canonical ensemble �de-
noted E� of configurations, with Q electrons populating N
orbitals. The set of configurations in E is obtained by fixing
or varying the population of each orbital, with the constraint
�i=1

N pi=Q. The average value of any quantity A�p�� over all
the configurations of E reads

�A	 =
1

U�E� �
p��E

A�p��G�p��e−�E�p��. �2�

In this expression, U�E� is the partition function of the
ensemble E and is defined as

U�E� = e−�F = �
p��E

G�p��e−�E�p��, �3�

where F is the total free energy and G�p�� is the degeneracy
of the configuration p� ,

G�p�� = 

i=1

N �gi

pi
� . �4�

Such expression of the degeneracy involving binomial
factors is the signature of the Fermi statistics, i.e., of the
proper accounting for the Pauli exclusion principle. It was
shown in �6�, using an integral representation of the partition
function evaluated with the saddle-point method, that the av-
erage populations of orbitals obey Fermi-Dirac distribution
in the limit of a large number of electron states.

The sums contained in formulas �2� and �3� run usually
over a very large number of electron configurations. A direct
evaluation of these expressions is therefore a hard and some-
times an almost impossible task. Unfortunately, the quadratic
dependence with respect to the populations of orbitals �due
to two-body interactions� is known to prevent any factoriza-
tion of the partition function. This drawback makes impos-
sible the use of recursion techniques to speed up the calcu-
lation of averages.

B. Use of a reference system

A way to avoid this factorization issue is to introduce an
arbitrary reference energy ER�p��, writing

U�E� = �
p��E

G�p��e−��ER�p��+�E�p��� �5�

=�e−��E	RUR�E� , �6�

with �E=E�p��−ER�p��. The letter R means that the assigned
quantity is evaluated in the new reference system by replac-
ing E�p�� by ER�p��. The notation �A	R is thus defined as

�A	R =
1

UR�E� �
p��E

A�p��G�p��e−�ER�p��, �7�

where

UR�E� = e−�FR = �
p��E

G�p��e−�ER�p��. �8�

Using Eqs. �3�, �5�, and �8�, the free energy of the genuine
interacting system can now be put in the form

F = FR −
1

�
ln�e−��E	R �9�

and the mean value of any quantity in the form

�A	 =
�Ae−��E	R

�e−��E	R
, �10�

which depend only on averages in the new reference system.
The choice of the reference energy ER�p��, though arbi-

trary, must enable one to evaluate UR�E� using recursion re-
lations �factorizability�. This is discussed in Sec. III. More-
over, only averages of quantities which are multinomial
functions of the populations �e.g., pi, pi

3pj, pi
4pj

2pk
3, etc.� can

be expressed in terms of partition functions �see Appendix
A�. Therefore, an approximation has to be made for the ex-
ponential term in Eqs. �9� and �10�. This is discussed in Sec.
II C.

C. Variational approach based on the Jensen-Feynman
inequality

Jensen’s inequality �7� states that for any continuous and
convex function u→ f�u�, one has

�f�u�	 � f��u	� , �11�

which leads, for f�u�=eu, to

�e−��E	R � e−���E	R �12�

and therefore from Eq. �6�

U�E� � e−���E	RUR�E� . �13�

Taking the natural logarithm of this expression, we obtain
the first-order Jensen-Feynman �or Gibbs-Bogoliubov�
�8–10� inequality

F � F�1�, �14�

where

F�1� = FR + ��E	R �15�

is an upper-bound approximation of the thermodynamic po-
tential F. If the reference energy contains free parameters,
they can be optimized through a minimization procedure,
providing in that way a better approximation for F.

It can be noticed that the Jensen-Feynman approach for
deriving F�1� is also consistent with the approximation
e−���E−��E	R�1 in the expression of F. Performing the same
approximation in Eq. �10� leads to

�A	  �A	R. �16�

III. FIRST PRESCRIPTION: CHOICE
OF THE REFERENCE SYSTEM

The choice of the reference system must allow one to
factorize the partition functions in order to derive recursion
relations. Recently, we have proposed an efficient technique
�4,5� to compute the partition functions. It is based on a
doubly nested recursion �on the number of electrons and or-
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bitals�, each orbital being added one after the other. Because
of the orbital separability, this approach can be applied to a
reference system with an energy of the form ER�p��
=�i=1

N 	i�pi�, where 	i is an arbitrary function of the popula-
tion of orbital i. Partition functions are then derived from the
efficient recursion relation

UQ;N
R = �

pN=0

min�Q,gN�

e−�	NUQ−pN;N−1
R �17�

initialized with UQ;0
R =�Q,0. An important constraint of the

recursive techniques is that only the average values of quan-
tities containing integer powers of the populations can be
deduced from the knowledge of partition functions �see Ap-
pendix A�.

In this section, we study the impact of choosing a particu-
lar reference energy on the accuracy of the method. A non-
exhaustive list of reference energies is presented in Table I.

In reference energy A, the quadratic terms with respect to
the populations are averaged over all the configurations. This
is the method used in the original superconfiguration theory
�1�. Case B corresponds to the work of Faussurier et al.: it
consists of a linear form of the populations and has N de-
grees of freedom �namely, �
i , i=1,N�� obtained by minimiz-
ing the right-hand side of Eq. �14�. Reference energy C is an
extended version of case B where a quadratic dependence of
the populations in a given orbital is added.

Case D is a power-law form which is introduced to infer
some information about the optimal exponents in the refer-
ence energy. It requires 2N parameters �
i , �i , i=1,N�. It
can be noticed that this choice prevents any closed-form
evaluation of ��E	R in terms of recursive partition functions
because ER�p�� is not a multinomial function. In this case, the
calculations are performed “brute force” by summing over
all the configurations.

In case A �no adjustable parameters�, the free energy is
directly obtained by evaluating Eq. �15�. In cases B–D, the
free parameters are determined by minimizing the same
equation. In practice, the minimization of the free energy F�1�

is performed with a conjugate-gradient method by using the
vector of derivatives with respect to the K free parameters
�ai , i=1,K�,

�� F�1� = � �F�1�

�a1
, . . . ,

�F�1�

�aK
� , �18�

which can be expressed analytically. For instance, for refer-
ence energy C, one has

�F�1�

�
k
= ��

i=1

N

��pi	R�pk	R − �pipk	R���i − 
i�

+
�

2 �
i,j=1

N

��pi�pj − �ij�	R�pk	R

− �pi�pj − �ij�pk	R��Vij − �i�ij� �19�

and

�F�1�

��k
=

�

2 �
i=1

N

��pi	R�pk�pk − 1�	R − �pipk�pk − 1�	R���i − 
i�

+
�

4 �
i,j=1

N

��pi�pj − �ij�	R�pk�pk − 1�	R

− �pi�pj − �ij�pk�pk − 1�	R��Vij − �i�ij� , �20�

where the mean quantities are calculated from the partition
functions of the reference system.

For numerical illustration, we consider the case discussed
in Ref. �11�, i.e., a copper plasma at T=100 eV and 
=8.96 g /cm3. The statistics is performed over all relativistic
configurations of the type

K2L8�3s1/23p1/23p3/23d3/23d5/24s1/24p1/24p3/2�Q,

where Q electrons �which may vary from 0 to 26� are dis-
tributed over the orbitals in parenthesis. The K �n=1� and L
�n=2� shells are assumed to be full. The free energies pre-
sented and discussed below do not include the contribution

TABLE I. Reference energies considered in this paper: �A� quadratic part of the energy averaged; �B�
linear reference energy; �C� quadratic reference energy; and �D� power-law reference energy. The free pa-
rameters in cases B–D are determined by minimizing the free energy.

System Reference energy ER�p�� Free parameters Degrees of freedom

A �
i=1

N

pi�i +
1

2�
i,j=1

N

�pi�pj − �i,j�	Vij None 0

B �
i=1

N

pi
i �
i� N

C �
i=1

N

�pi
i + 1
2pi�pi − 1��i� �
i� , ��i� 2N

D �
i=1

N

pi
�i
i �
i� , ��i� 2N
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of the frozen core. We can see in Table II, for different values
of the number of electrons Q �first column�, that the free
energies when the interactions are artificially canceled �third
column� are very different from the exact values �second
column�. It is obvious that the inclusion of the interactions is
crucial: the maximum error reaches about 65% for Q=13
�half the total degeneracy�. When the interactions are aver-
aged �fourth column, reference energy A�, the maximum er-
ror �still reached for Q=13� is reduced to 8%. It is interesting
to mention that the results do not change if the reference
energy is shifted by a quantity which is independent of the
populations �see Appendix B�. The results can be improved
by minimizing the free energy. For instance, with a linear
reference energy and first-order Jensen-Feynman inequality
�fifth column, F�1� with reference energy B�, the maximum
discrepancy between the obtained free energies and the exact
values drops to 0.03%. One finds that the use of a quadratic
reference energy, which introduces twice the number of free
parameters �sixth column, reference energy C�, brings a
slight improvement of the results which were already excel-
lent using reference energy B. This can be understood con-
sidering the “power-law” reference energy �seventh column,
reference energy D�. One finds that the exponents obtained
after minimization are very close to one �see Table III� for all
the eight orbitals, which justifies the choice of the linear
reference energy. One can also notice that the free energies
obtained with the power-law reference energy D are very
close to the ones obtained with the quadratic reference en-
ergy C. This is another evidence that the linear part of the
energy prevails over the quadratic part.

Figures 1 and 2 display, for each orbital i, the ratio 
i /�i
obtained after minimization of the free energy with reference

energy B and first-order Jensen-Feynman inequality �F�1��.
One can see that for the highest-energy orbitals, 
i can be
very different from �i, which can be explained by the fact
that the electrons in such orbitals are very sensitive to
electron-electron interactions, on the contrary to electrons in
the lower orbitals which are more subject to the attraction of
the nucleus.

One can be surprised that some values of 
i become posi-
tive �orbitals 3d3/2 and 3d5/2 �see Fig. 1�� for some values of
Q. In fact, reference energy B is the energy of a fictious
noninteracting system. It represents both the linear part of
the energy of the real system and the quadratic interactions,
which are positive. Therefore, when the contribution of the
quadratic interactions dominates, 
i can become positive.

The strength of the method resides in the fact that, even
when 
i differs notably from �i, the populations of the cor-
responding orbitals are very close to the exact results, which
was rather unexpected.

IV. SECOND PRESCRIPTION: HIGHER-ORDER
JENSEN-FEYNMAN INEQUALITY

A better approximation may be found by applying Jens-
en’s inequality �11� to the convex function,

fn�u� = eu − �
k=0

2n−1
uk

k!
, �21�

with u=−���E�p��− ��E�p��	R�. We obtain a new Jensen-
Feynman inequality �3� with an adjustable precision driven
by n, which reads

TABLE II. Free energy �eV� for Q=2, 7, 13, 19, and 25 electrons in orbitals
�3s1/2 ,3p1/2 ,3p3/2 ,3d3/2 ,3d5/2 ,4s1/2 ,4p1/2 ,4p3/2� for a copper plasma at T=100 eV and =8.96 g /cm3 cal-
culated using the reference energies A–D of Table I. The free energy is developed either at the first �F�1�� or
third �F�3�� order of the Jensen-Feynman approach. The second and third columns contain, respectively, the
exact values of the free energies when the interaction energies Vij are either kept or artificially canceled.

Q

F F�1� F�3�

Exact Exact with Vij �0 A B C D B

2 −810.1430 −829.6907 −809.9468 −810.1370 −810.1385 −810.1386 −810.1430

7 −1813.4044 −2187.1193 −1786.6201 −1813.1371 −1813.2003 −1813.1985 −1813.4034

13 −1878.6536 −3115.7014 −1716.0766 −1878.0163 −1878.1632 −1878.1531 −1878.6451

19 −914.4643 −3419.8402 −612.4660 −914.2243 −914.2825 −914.2815 −914.4636

25 1377.7764 −2911.9648 1474.4451 1377.7764 1377.7764 1377.7764 1377.7764

TABLE III. Values of exponents �i obtained after minimization of the free energy within first-order
Jensen-Feynman inequality using reference energy D: �i=1

N pi
�i
i.

Q 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 4s1/2 4p1/2 4p3/2

2 1.001 1.001 1.001 1.002 1.002 1.023 1.026 1.028

7 1.002 1.002 1.004 1.004 1.006 1.020 1.023 1.032

13 1.002 1.004 1.008 1.007 1.012 1.017 1.022 1.056

19 1.001 1.001 1.006 1.003 1.012 1.026 1.032 1.133

25 1.013 1.009 1.008 1.007 1.004 1.029 1.042 1.187

PAIN, GILLERON, AND FAUSSURIER PHYSICAL REVIEW E 80, 026703 �2009�

026703-4



F � F�2n−1�, �22�

where

F�2n−1� = FR + ��E	R −
1

�
ln�1 + �

k=2

2n−1

�− 1�k�k

k!
Mk� ,

�23�

with Mk= ���E− ��E	R�k	R. The expression of F�2n−1� is more
and more complicated as the order n increases, but all the
quantities Mk, k=1, . . . ,2n−1, can still be obtained using our
efficient recursion relations. The last column of Table II
shows the values of the free energy developed at the third
order �i.e., n=2� and minimized with the linear reference
energy B. We can see that, even with this simple reference
energy, the obtained free energy F�3� is always closer to the
exact value than F�1�. The precision reached by increasing
the order of Jensen-Feynman inequality is better than the one
obtained within changing the reference energy and/or in-
creasing the number of free parameters. We have checked
that an arbitrary precision can be obtained by going to higher

order �n=3 or more�. However, it must be clear that the
computational time increases rapidly with n due to multiple
evaluations of F�2n−1� by the minimization routine.

V. CONCLUSION

In this paper, it was proposed to account for two-body
interactions in the calculation of partition functions in the
canonical ensemble. Based on the work of Faussurier et al.
relying on Jensen-Feynman �or Gibbs-Bogoliubov� inequal-
ity, we showed that, thanks to our recently published recur-
sion relation, it is now possible to use a quadratic reference
energy, which takes into account electron-electron interac-
tion inside a given orbital. The required new quantities were
presented in a compact form. It was shown, however, using
an optimized-exponent reference energy, that a linear refer-
ence energy is usually sufficient to achieve a high precision.
Finally, we found that the approach of Faussurier et al. can
be improved by applying Jensen’s inequality to the differ-
ence between the exponential function and its �2n−1�th-order
Taylor development. In this case, the expression of the free
energy to be minimized is more complicated, but the quan-
tities �high-order moments� involved can still be obtained
from our robust recursion relations.

APPENDIX A: AVERAGING PROCESS

When a function A�p�� contains only powers of the popu-
lations, it is easy to show that its average value �A	R, defined
in Eq. �7�, can always be calculated from the knowledge of
partition functions whatever the form of the reference energy.
This is due the following relation between binomial coeffi-
cients:

p�g

p
� = g�g

p
� − g�g − 1

p
� . �A1�

This allows one to write, for instance,

�pi	R = gi�1 −
UQ;N

R �gi�
UQ;N

R �g�
� �A2�

and

�pi�pj − �ij�	R = gi�gj − �ij�

� �1 −
UQ;N

R �gi�
UQ;N

R �g�
−

UQ;N
R �gj�

UQ;N
R �g�

+
UQ;N

R �gij�
UQ;N

R �g�
� ,

�A3�

where notation gijk¯ means that the partition function is
evaluated with the degeneracy of orbitals i, j, k, etc., reduced
by one.

APPENDIX B: INVARIANCE WITH RESPECT TO A
TRANSLATION OF THE REFERENCE ENERGY

Let us consider the reference energy

ER,C�p�� = ER�p�� + C , �B1�

where C is a constant. One has

5 10 15 20 25
Number of electrons (Q)

-0.2

0

0.2

0.4

0.6

0.8

1
θ i/ε

i,
i=

1,
8

3s
1/2

3p
1/2

3p
3/2

3d
3/2

3d
5/2

FIG. 1. �Color online� Ratio 
i /�i for orbital i �3s1/2-3d5/2� ob-
tained after minimization of the free energy within first-order
Jensen-Feynman inequality �14� using reference energy B. The ra-
tios for 3p1/2 �thin line� and 3p3/2 �crosses� are almost indistinguish-
able, as well as the ratios for 3d3/2 �dashed line� and 3d5/2 �plus
symbols�.

0 5 10 15 20 25
Number of electrons (Q)

0

10

20

30

40

θ i/ε
i,

i=
1,

8

4s
1/2

4p
1/2

4p
3/2

FIG. 2. �Color online� Ratio 
i /�i for each orbital i �4s1/2-4p3/2�
obtained after minimization of the free energy within first-order
Jensen-Feynman inequality �14� using reference energy B.
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FR,C = −
1

�
ln��

p��E
G�p��e−�ER,C�p���

= −
1

�
ln��

p��E
G�p��e−�ER�p��� + C = FR + C . �B2�

Moreover, for any quantity A�p��, one has �see Eq. �7��

�A	R,C =
1

UR,C�E� �
p��E

A�p��G�p��e−�ER,C�p��

=
1

UR�E� �
p��E

A�p��G�p��e−�ER�p�� = �A	R. �B3�

Therefore, one obtains

�E − ER,C	R,C = �E − ER,C	R = �E − ER	R − C . �B4�

In the same way, one can check easily that the quantities
Mk do not depend on C. This leads to

F�2n−1� = FR,C + �E − ER,C	R,C −
1

�
ln�1 + �

k=2

2n−1

�− 1�k�k

k!
Mk�

= FR + �E − ER	R −
1

�
ln�1 + �

k=2

2n−1

�− 1�k�k

k!
Mk� ,

�B5�

which means that the quantity F�2n−1� does not depend on C
whatever the value of n.

APPENDIX C: AVERAGE-ATOM ORBITAL ENERGIES

There is an error in �2�, which has not been properly
corrected in the erratum �12�. In the original paper �2�, for-
mula �9� reads

��
ion = − �� − �

�

��n�	0 − �������. �C1�

In the erratum �12�, the authors suggest to replace that ex-
pression by

��
ion = − �� − �

�

��n�	0 − ���/g�����, �C2�

which is also wrong. The correct expression is

��
ion = − �� − �

�

�n�	0�1 − ���/g�����. �C3�
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